

La variabilità pedo-climatica conta. Soluzioni sito-specifiche per mitigare le emissioni di ammoniaca causate dalle fertilizzazioni

M. Mencaroni, N. Dal Ferro, J. Furlanetto, M. Longo, F. Morari

Dipartimento DAFNAE, Università di Padova

B. Lazzaro, I. Martini

Regione del Veneto, Direzione Agroambiente, caccia e pesca, U.O. Agroambiente, Italy

L. Sartori

Dipartimento TESAF, Università di Padova

B. B. Grant, W. N. Smith

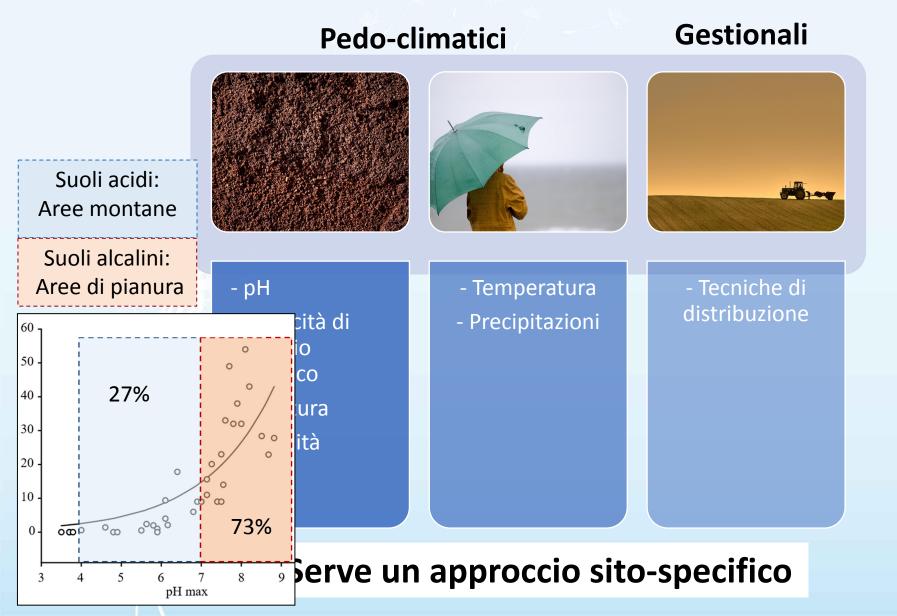
Ottawa Research and Development Centre, Agriculture and Agri-Food Canada

Conferenza LIFE prepAIR, Bologna, 5 Maggio 2022

Le normative e gli obiettivi

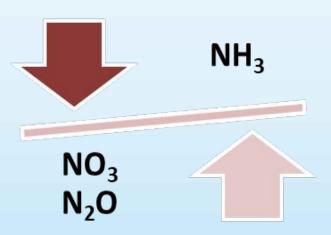
Direttiva NEC 2016/2284/EU □ Riduzione delle emissioni dai fertilizzanti minerali

- No utilizzo carbonato d'ammonio
- Utilizzo fertilizzanti organici
- Sostituzione con nitrato d'ammonio
- Applicare misure che abbattano almeno del 30% le emissioni rispetto alla distribuzione superficiale di urea



Misura	Riduzione
Inibitore Ureasi	40-70%
Fertilizzanti a lento rilascio	30%
Interramento a solco chiuso	80-90%
Incorporazione profonda	50-80%
Irrigazione	40-70%
Nitrato d'ammonio	90%

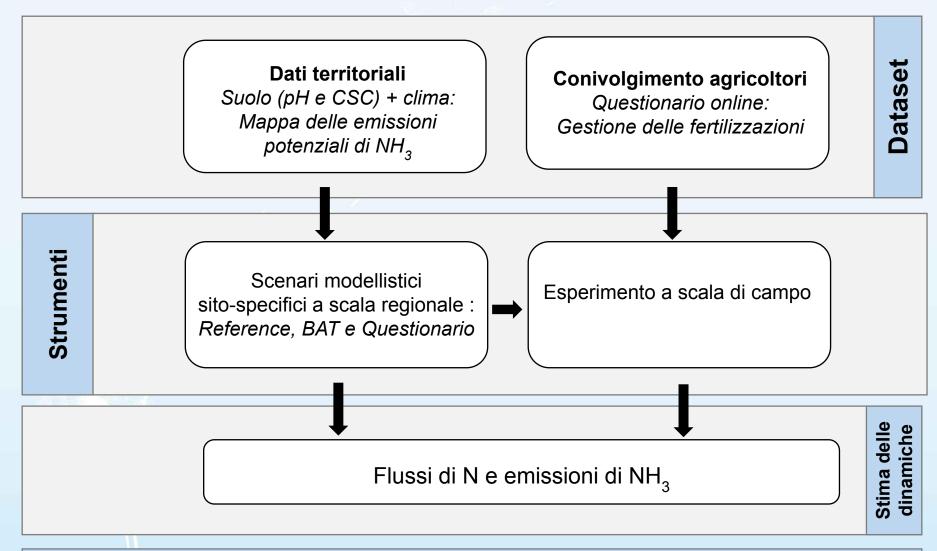
Fattori che influenzano la volatilizzazione


Come vanno valutate le pratiche da adottare?

Considerare intero bilancio dell'azoto, non solo N emesso in atmosfera come NH₃

Lisciviazione nitrato o perdite come protossido

Obiettivi


- 1. Individuare aree più suscettibili alla volatilizzazione
- 2. Individuare le BAT più promettenti
- 3. Utilizzare un approccio olistico

L'approccio metodologico a livello regionale

Selezione delle BAT più promettenti a livello sito-specifico

Scenari modellistici con DeNitrificaion DeComposition model

Scenari	Descrizione
Distribuzione superficiale di urea	Riferimento da normativa
Distribuzione superficiale di nitrato d'ammonio	BAT UNECE/Questionario frum.
Interramento a solco chiuso di nitrato d'ammonio	BAT UNECE
Interramento a solco chiuso di urea	BAT UNECE
UAN	BAT UNECE (frum.)
Inibitore ureasi	BAT UNECE
Iniezione profonda di liquame	BAT UNECE
Iniezione profonda di digestato	BAT UNECE
Sarchiatura di urea	BAT UNECE/Questionario mais

- 5 hotspot pedo-climatici rappresentativi
- 5 anni
- 2 colture: mais e frumento

 \Box Oltre a NH₃, simulate perdite N come N₂O e NO₃

Sperimentazione di campo

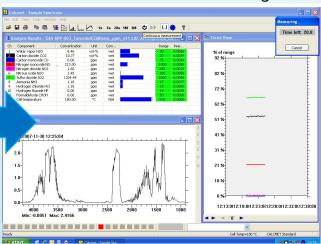
4 tesi su distribuzione urea:

- Distribuzione superficiale
- Sarchiatura a 3 cm
- Sarchiatura a 6 cm
- Interramento a solco chiuso a 6 cm

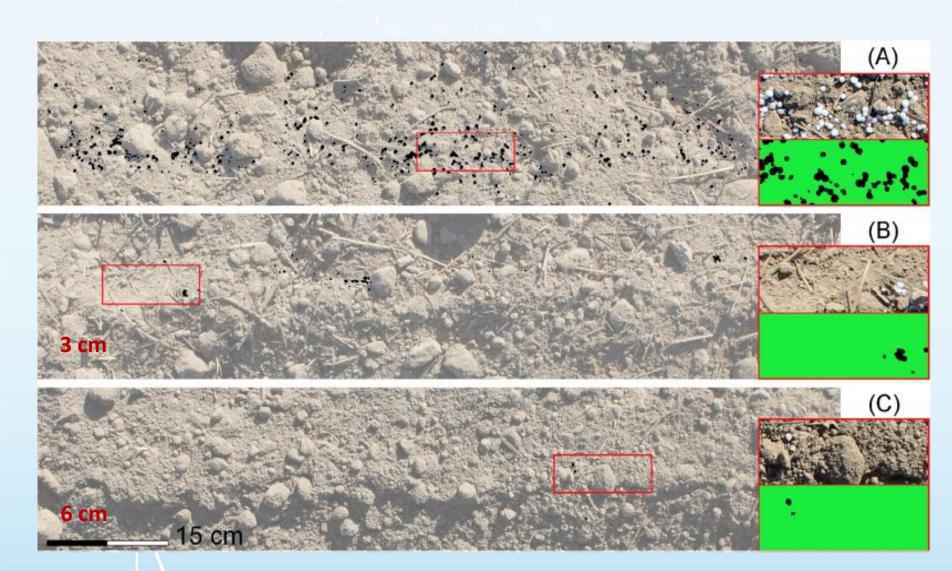
Interpolazione dei dati sperimentali

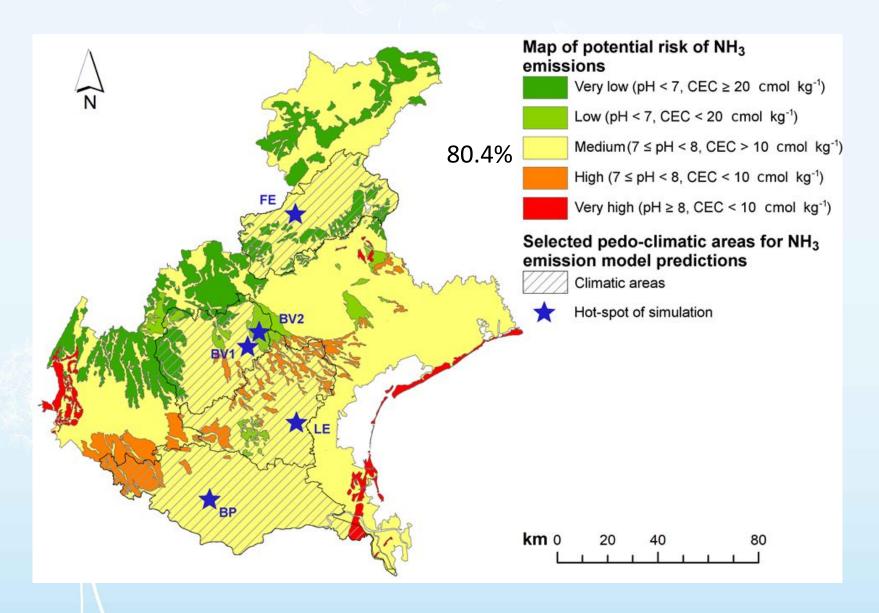
$$dY/dt = \frac{\theta}{\theta} acie^{(-c1/T_t)} \left[1 - e^{(-c1/T_t)}\right]^{(i-1)}$$

Mencaroni et al., 2020


Tunnel del vento

Analizzatore FTIR

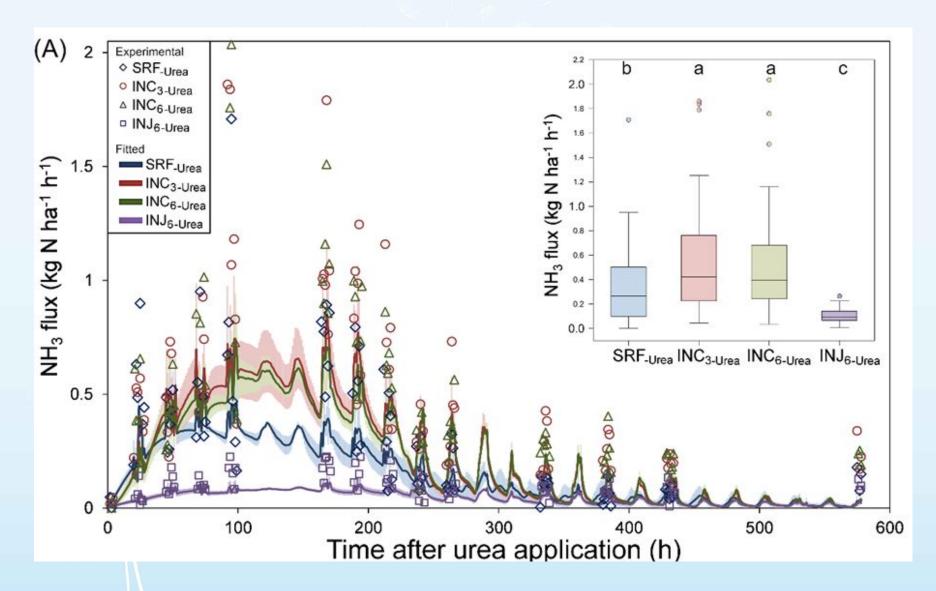

Concentrazione NH₃


Sperimentazione di campo – prova preliminare sarchiatura

Mappa delle emissioni potenziali di ammoniaca

Risultati modellistica

BAT mais	Medio rischio	Basso rischio	No.
NA superficiale	42.2	74.4	
NA interramento	61.0	100	Riduzione delle emissioni
Urea interramento	38.3	88.5	Riduzione delle emissioni almeno del 30% (UNECE)
Urea inibitore	45.7	94.8	
Liquame iniezione	93.0	91.8	_
Digestato iniezione	92.5	94.5	
Urea sarchiatura	17.9	79.3	


Attenzione alla liscivizione

BAT frumento	Medio rischio	Basso rischio
NA superficiale	54.2	75.8
NA interramento	89.1	100
Urea interramento	60.1	100
Urea inibitore	43.4	80.3
Liquame iniezione	96.7	97.9
Digestato iniezione	93.7	98.3
UAN	27.2	38.7

Sperimentazione di campo

Riassumendo

. . .

Approccio sito-specifico

 Emissioni maggiormente influenzate da pH suolo

BAT promettenti

- Iniezione a solco chiuso
- Nitrato d'ammonio
- Organici

Supporto alle decisioni

- Approccio integrato
- Valutazione del ciclo dell'azoto

Ulteriori sviluppi...

Prototipo ALPEGO per l'interramento a solco chiuso del fertilizzante in colture a interfila stretta

Testato in campo

Riduce le emissioni più del 30%

Pubblicazioni

APPROCCIO MIRATO ALLA TIPOLOGIA DI SUOLO

Emissioni di ammoniaca: ridurle con le buone pratiche

di N. Dal Ferro, M. Mencaroni, M. Longo, J. Furlanetto, L. Sartori, F. Morari

Per limitare le emissioni di ammoniaca in atmosfera derivanti dalla fertilizzazione delle colture è essenziale

Journal of Environmental Management 277 (2021) 111445

Contents lists available at ScienceDirect

Journal of Environmental Management

Research article

M. Mencaroni ^a, N. Dal Ferro ^{a,*}, J. Furlanetto ^a, M. Longo ^a, B. Lazzaro ^b, L. Sartori ^c, B.B. Grant ^d, W.N. Smith ^d, F. Morari ^a

Grazie per l'attenzione

Mencaroni Marta marta.mencaroni@phd.unipd.it

www.lifeprepair.eu - info@lifeprepair.eu

ARSO ENVIRONMENT Slovenian Environment Agency

