

Study by the JRC on the impact of emission precursors on air quality in the Po Basin

A. de Meij, P. Thunis PrePair meeting, May 5th 2022

Joint Research Centre

Impact of agriculture emissions: a complex issue

Sectorial contributions to PM_{2.5} for 150 EU cities

Receptor: - "hot-spot" model grid cell concentration in each city

- Yearly average

Source: - 7 sectors among which agriculture

- 3 main spatial scales (city, country, EU)

Average contribution from agriculture

150 City fiches

PM_{2.5} Atlas main conclusions

- 1. Target or key sectors and scales to abate air pollution are city specific
- 2. For many cities, sectoral measures addressing agriculture at country or EU scale would have a clear benefit on urban air quality. Agriculture contributes to more than 25% of the air pollution in about 20% of the cities and to more than 20% in 50% of them.
- 3. For many cities, local actions at the city scale are an effective means of improving air quality. About 30% of the cities contribute to at least 40% of their pollution and about 50% contribute to more than 30% of their pollution.
- 4. Because of methodological choices and assumptions, the responsibility of a city in generating its air pollution is often underestimated.

Impacts of NH₃/NO_x emissions on PM_{2.5} and associated non-linearities

Environment International

Volume 156, November 2021, 106699

Impact of SO_x , NO_x and NH_3 emission reductions on $PM_{2.5}$ concentrations across Europe: Hints for future measure development

A. Clappier ^a, P. Thunis ^b $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, M. Beekmann ^c, J.P. Putaud ^b, A. de Meij ^d

Show more V

Atmos. Chem. Phys., 21, 9309–9327, 2021 https://doi.org/10.5194/acp-21-9309-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Non-linear response of $PM_{2.5}$ to changes in NO_x and NH_3 emissions in the Po basin (Italy): consequences for air quality plans

Philippe Thunis¹, Alain Clappier², Matthias Beekmann³, Jean Philippe Putaud¹, Cornelis Cuvelier¹.☆, Jessie Madrazo⁴, and Alexander de Meij⁵

- ¹European Commission, Joint Research Centre, Ispra, Italy
- ²Université de Strasbourg, Laboratoire Image Ville Environnement, Strasbourg, France
- ³Université de Paris and Université Paris-Est Créteil, CNRS, LISA, F-75013 Paris, France
- ⁴Signa Terre SA, Geneva, Switzerland ⁵MetClim, Varese, Italy
- Protired

Correspondence: Philippe Thunis (philippe.thunis@ec.europa.eu)

Received: 22 January 2021 – Discussion started: 4 February 2021 Revised: 23 April 2021 – Accepted: 5 May 2021 – Published: 17 June 2021

- Focus on the Po basin, a region where chemical regimes are the most complex, showing important non-linear processes, especially those related to interactions between NO_x and NH₃.
- Analyse the sensitivities of PM_{2.5} to NO_x and NH₃ emissions by means of a set of EMEP simulations performed with different levels of emission reductions, from 25% up to a total switch-off of those emissions.
- Apply single and combined precursor reduction scenarios to determine the most efficient emission reduction strategies and quantify the interactions between NO_x and NH₃ emission reductions

Chemical regimes for moderate (25%) emission reductions

Chemical regimes for larger emission reductions

Note: Inversion of regimes according to the emission reduction strength

Moderate NO_x emission reductions may lead to increased $PM_{2.5}$ concentrations

- ✓ The increased oxidative capacity of the atmosphere is the cause of the increase of PM_{2.5} induced by a reduction in NOx emission.
- ✓ This process can have contributed to the absence of significant PM_{2.5} concentration decrease during the COVID-19 lockdowns in many European cities.
- ✓ It is important to account for this process when designing air quality plans, since it could well lead to transitionary increases in PM_{2.5} at some locations in winter as NO_x emission reduction measures are gradually implemented.

Conclusions

- This work confirms the peculiarity of secondary PM_{2.5} formation in the Po basin, characterised by contrasting chemical regimes within distances of few (hundreds of) kilometres, as well as strong non-linear responses to emission reductions during wintertime.
- One striking result is the increase of the $PM_{2.5}$ concentration levels when NO_x emission reductions are applied in NOx-rich areas, such as the surroundings of Bergamo.
- While PM2.5 responses to NO_x and NH₃ emission reduction show large variations seasonally and spatially, these responses remain close to linear, at least up to -50%.
- It would be important to compare these results with similar results obtained from other models. With its complex setting, the Po basin represents a good test case for such inter-comparisons.

Appendix

Emission differences: implications for source apportionment

Spatial averaging at the receptor

City centre SA

Commission

Temporal averaging at the receptor

A new methodology to evaluate the effectiveness of local policies during high PM2.5 episodes: application on 10 European cities. Pisoni, E., Thunis, P., de Meij, A., Bessagnet, B.: Submitted to Atmos. Chem. Phys., 2021

Year: 44%

Winter: 75%

Day: 90%

Conclusions

- The Atlas 2021 confirms the findings of 2017
 - Local actions are efficient in most cities
 - Abating agriculture emissions is an efficient way to improve urban air quality
 - City specificities must be considered when designing air quality plans
 - Methodological choices can often lead to underestimating the city responsibility on its air quality
- Emissions are the crucial input to source apportionment, but yet a very uncertain input. Hence the need to improve their robustness.
 (FAIRMODE QA/QC process)

Thank-you

SA Method

